报告人:Alexey A. Tuzhilin
报告题目:Continuous Gromov-Hausdorff Distsnce
报告摘要:The Gromov-Hausdorff distance measures the difference between non-empty metric spaces: for isometric spaces it is zero. The formal definition is based on minimizing the distortions of surjective multivalued mappings (correspondences) between metric spaces. If we restrict each correspondence between spaces X and Y to its subset generated by some functions f:X\to Y and g:Y\to X, we obtain the same value. However, if we restrict ourselves to only those correspondences that contain continuous functions f and g, we obtain the concept of the continuous Gromov-Hausdorff distance, which has many unexpected properties and is the main topic of the talk.
报告时间:9月15日10-11点
报告地点:明德楼B区201-1报告厅
报告人简介:Alexey A. Tuzhilin是莫斯科国立大学力学数学系教授,俄罗斯联邦高教部高级学位委员会委员。他的主要研究方向为度量几何、几何图论及几何中的变分问题,并在极值网络理论和图论领域有深入研究。 他曾获俄罗斯联邦青年科学家奖、国际组合学会Euler奖等奖项。